

The LLM Language Network: How LLMs Outgrow the Human Language Network

Badr AlKhamissi¹ Greta Tuckute² Yingtian Tang¹ Taha Binhuraib³ Antoine Bosselut*,¹ Martin Schrimpf*,¹

*Equal Supervision

1EPFL 2III 3

Highlights

- Untrained models align with brain via context integration
- 2. Formal linguistic competence drives alignment early, saturates ~4B tokens
- 3. Functional competence emerges later, with weaker brain correlation
- 4. Correlation between models' brain alignment and their next-word-prediction performance, as well as their behavioral alignment fades over time.
- Model size ≠ better brain alignment (when controlling features).

* Human Language Network

Specialized area within the brain responsible for understanding and producing language.

Methods

- . Benchmarked **34** checkpoints
- 2. Spanning ~300B tokens
- 3. Across 8 different model sizes
- 4. On **5** brain-recording datasets, and **1** behavioral dataset
- . And on 2 formal linguistic benchmarks and 6 functional

Research Questions

What drives brain alignment of LLMs?
Is it primarily linked to formal or functional linguistic competence?
Do LLMs diverge from humans as they surpass human-level prediction?

0.1

0.05 t

Untrained | Original Stimuli

0.02

Pretrained | Random Stimuli (= Length

(b) Pythia-2.8B

Number of Tokens

 $R^2 = 0.51$

 $R^2 = 0.40$

- 0.3 E

0.05

(a) Pythia (5 Models)

 $R^2 = 0.36$

E 0.02

Legend

Brain Alignmen

Formal Competence

Functional Competence

Pretrained | Original Stimuli

Behavior Alignment

Behavior Alignment

Model Size ≠ Better Brain Alignment